\(\int \frac {(d+e x^n)^2}{(a+c x^{2 n})^2} \, dx\) [49]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 203 \[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\frac {x \left (c d^2-a e^2+2 c d e x^n\right )}{2 a c n \left (a+c x^{2 n}\right )}+\frac {e^2 x \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2 n},\frac {1}{2} \left (2+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )}{a c}-\frac {\left (c d^2-a e^2\right ) (1-2 n) x \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2 n},\frac {1}{2} \left (2+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )}{2 a^2 c n}-\frac {d e (1-n) x^{1+n} \operatorname {Hypergeometric2F1}\left (1,\frac {1+n}{2 n},\frac {1}{2} \left (3+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )}{a^2 n (1+n)} \]

[Out]

1/2*x*(c*d^2-a*e^2+2*c*d*e*x^n)/a/c/n/(a+c*x^(2*n))+e^2*x*hypergeom([1, 1/2/n],[1+1/2/n],-c*x^(2*n)/a)/a/c-1/2
*(-a*e^2+c*d^2)*(1-2*n)*x*hypergeom([1, 1/2/n],[1+1/2/n],-c*x^(2*n)/a)/a^2/c/n-d*e*(1-n)*x^(1+n)*hypergeom([1,
 1/2*(1+n)/n],[3/2+1/2/n],-c*x^(2*n)/a)/a^2/n/(1+n)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1451, 1445, 1432, 251, 371} \[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=-\frac {(1-2 n) x \left (c d^2-a e^2\right ) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2 n},\frac {1}{2} \left (2+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )}{2 a^2 c n}-\frac {d e (1-n) x^{n+1} \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2 n},\frac {1}{2} \left (3+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )}{a^2 n (n+1)}+\frac {x \left (-a e^2+c d^2+2 c d e x^n\right )}{2 a c n \left (a+c x^{2 n}\right )}+\frac {e^2 x \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2 n},\frac {1}{2} \left (2+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )}{a c} \]

[In]

Int[(d + e*x^n)^2/(a + c*x^(2*n))^2,x]

[Out]

(x*(c*d^2 - a*e^2 + 2*c*d*e*x^n))/(2*a*c*n*(a + c*x^(2*n))) + (e^2*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1)
)/2, -((c*x^(2*n))/a)])/(a*c) - ((c*d^2 - a*e^2)*(1 - 2*n)*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((
c*x^(2*n))/a)])/(2*a^2*c*n) - (d*e*(1 - n)*x^(1 + n)*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c*
x^(2*n))/a)])/(a^2*n*(1 + n))

Rule 251

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, (-b)*(x^n/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 1432

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Dist[d, Int[1/(a + c*x^(2*n)), x], x] + D
ist[e, Int[x^n/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &
& (PosQ[a*c] ||  !IntegerQ[n])

Rule 1445

Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^n)*((a + c*x^(2*n
))^(p + 1)/(2*a*n*(p + 1))), x] + Dist[1/(2*a*n*(p + 1)), Int[(d*(2*n*p + 2*n + 1) + e*(2*n*p + 3*n + 1)*x^n)*
(a + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && ILtQ[p, -1]

Rule 1451

Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)
^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && ((
IntegersQ[p, q] &&  !IntegerQ[n]) || IGtQ[p, 0] || (IGtQ[q, 0] &&  !IntegerQ[n]))

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {c d^2-a e^2+2 c d e x^n}{c \left (a+c x^{2 n}\right )^2}+\frac {e^2}{c \left (a+c x^{2 n}\right )}\right ) \, dx \\ & = \frac {\int \frac {c d^2-a e^2+2 c d e x^n}{\left (a+c x^{2 n}\right )^2} \, dx}{c}+\frac {e^2 \int \frac {1}{a+c x^{2 n}} \, dx}{c} \\ & = \frac {x \left (c d^2-a e^2+2 c d e x^n\right )}{2 a c n \left (a+c x^{2 n}\right )}+\frac {e^2 x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a c}-\frac {\int \frac {\left (c d^2-a e^2\right ) (1-2 n)+2 c d e (1-n) x^n}{a+c x^{2 n}} \, dx}{2 a c n} \\ & = \frac {x \left (c d^2-a e^2+2 c d e x^n\right )}{2 a c n \left (a+c x^{2 n}\right )}+\frac {e^2 x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a c}-\frac {\left (\left (c d^2-a e^2\right ) (1-2 n)\right ) \int \frac {1}{a+c x^{2 n}} \, dx}{2 a c n}-\frac {(d e (1-n)) \int \frac {x^n}{a+c x^{2 n}} \, dx}{a n} \\ & = \frac {x \left (c d^2-a e^2+2 c d e x^n\right )}{2 a c n \left (a+c x^{2 n}\right )}+\frac {e^2 x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a c}-\frac {\left (c d^2-a e^2\right ) (1-2 n) x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{2 a^2 c n}-\frac {d e (1-n) x^{1+n} \, _2F_1\left (1,\frac {1+n}{2 n};\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a^2 n (1+n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.67 \[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\frac {x \left (a e^2 (1+n) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2 n},\frac {1}{2} \left (2+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )+\left (c d^2-a e^2\right ) (1+n) \operatorname {Hypergeometric2F1}\left (2,\frac {1}{2 n},\frac {1}{2} \left (2+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )+2 c d e x^n \operatorname {Hypergeometric2F1}\left (2,\frac {1+n}{2 n},\frac {1}{2} \left (3+\frac {1}{n}\right ),-\frac {c x^{2 n}}{a}\right )\right )}{a^2 c (1+n)} \]

[In]

Integrate[(d + e*x^n)^2/(a + c*x^(2*n))^2,x]

[Out]

(x*(a*e^2*(1 + n)*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)] + (c*d^2 - a*e^2)*(1 + n)*Hy
pergeometric2F1[2, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)] + 2*c*d*e*x^n*Hypergeometric2F1[2, (1 + n)/(2*n)
, (3 + n^(-1))/2, -((c*x^(2*n))/a)]))/(a^2*c*(1 + n))

Maple [F]

\[\int \frac {\left (d +e \,x^{n}\right )^{2}}{\left (a +c \,x^{2 n}\right )^{2}}d x\]

[In]

int((d+e*x^n)^2/(a+c*x^(2*n))^2,x)

[Out]

int((d+e*x^n)^2/(a+c*x^(2*n))^2,x)

Fricas [F]

\[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\int { \frac {{\left (e x^{n} + d\right )}^{2}}{{\left (c x^{2 \, n} + a\right )}^{2}} \,d x } \]

[In]

integrate((d+e*x^n)^2/(a+c*x^(2*n))^2,x, algorithm="fricas")

[Out]

integral((e^2*x^(2*n) + 2*d*e*x^n + d^2)/(c^2*x^(4*n) + 2*a*c*x^(2*n) + a^2), x)

Sympy [F]

\[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\int \frac {\left (d + e x^{n}\right )^{2}}{\left (a + c x^{2 n}\right )^{2}}\, dx \]

[In]

integrate((d+e*x**n)**2/(a+c*x**(2*n))**2,x)

[Out]

Integral((d + e*x**n)**2/(a + c*x**(2*n))**2, x)

Maxima [F]

\[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\int { \frac {{\left (e x^{n} + d\right )}^{2}}{{\left (c x^{2 \, n} + a\right )}^{2}} \,d x } \]

[In]

integrate((d+e*x^n)^2/(a+c*x^(2*n))^2,x, algorithm="maxima")

[Out]

1/2*(2*c*d*e*x*x^n + (c*d^2 - a*e^2)*x)/(a*c^2*n*x^(2*n) + a^2*c*n) + integrate(1/2*(2*c*d*e*(n - 1)*x^n + c*d
^2*(2*n - 1) + a*e^2)/(a*c^2*n*x^(2*n) + a^2*c*n), x)

Giac [F]

\[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\int { \frac {{\left (e x^{n} + d\right )}^{2}}{{\left (c x^{2 \, n} + a\right )}^{2}} \,d x } \]

[In]

integrate((d+e*x^n)^2/(a+c*x^(2*n))^2,x, algorithm="giac")

[Out]

integrate((e*x^n + d)^2/(c*x^(2*n) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^n\right )^2}{\left (a+c x^{2 n}\right )^2} \, dx=\int \frac {{\left (d+e\,x^n\right )}^2}{{\left (a+c\,x^{2\,n}\right )}^2} \,d x \]

[In]

int((d + e*x^n)^2/(a + c*x^(2*n))^2,x)

[Out]

int((d + e*x^n)^2/(a + c*x^(2*n))^2, x)